J ulian Torggler

Graz University of Technology, Graz, Austria

Julian Torggler works in his third year as a university project assistant at TU Graz at the Institute for Structural Durability and Rail Vehicle Technology under the supervision of Prof. Leitner Martin. Here he is working on a research project on the topic of fatigue analysis of fibre composite material with rubber matrix as part of his dissertation. This includes finite element analyses as well as damage analysis and specimen testing at the institute's test field. In addition to various internships, he already worked as a student assistant at various institutes during his studies and completed his master's degree in mechanical engineering in 2020.


Bogies of rail vehicles for passenger coaches and traction units commonly contain air spring systems as secondary spring stages. In the development and design of spring stages, it is necessary to ensure precise knowledge about the material properties and fatigue behaviour of the air spring bellows.

The aim of this work is to systematically investigate the damage mechanisms evaluated at air spring bellows on sample level and to analyse the fatigue strength of the base material under different load conditions. A validated numerical model of the component is used as basis for deriving the local stresses of the composite. A specimen geometry is developed by means of numerical analysis, which ensures the transferability of the local load states to the specimen geometry. The determination of the stresses in the small sample is carried out by a simplified numerical model. To validate the local stresses, surface strain measurements have been carried out.

The specially developed small sample is biaxially loaded and different layups are examined at varying load levels. The fatigue test results reveal that under comparable load conditions, the fibre angle exhibits a clear influence on the fatigue strength. Furthermore, the effect of the peak load at a constant base load is also remarkable based on the conducted experiments. With the help of the presented methodology utilizing the developed representative small sample and testing procedure, a time- and cost-efficient fatigue design of cord rubber composite materials in air spring bellows of rail vehicles is facilitated.


Room 9Wednesday 29th November12:15-12:45Julian Torggler
S04-1 Composites, elastomers and adhesive bonding
22 - Fatigue Behaviour of Cord Rubber Composite Materials in Air Spring Bellows of Rail Vehicles
Welcome to Booth.

Tincidunt id aliquet risus feugiat, inante metus dictum at tempor usis nans.